EXPANDING AND FACTORISING QUADRATICS

Pearson Edexcel - Thursday 8 November 2018 - Paper 2 (Calculator) Foundation Tier

1.

26	(a)	$10x^2 - 11x - 6$	M1	for 3 out of no more than 4 terms correct with correct signs or 4 correct terms ignoring signs	$10x^2 - 15x + 4x - 6$ NB: $10x^2 - 11x$ and $-11x - 6$ are indicative of
			A1	cao	3 correct terms.
	(b)	(x+1)(x+3)	M1	for $(x \pm 1)(x \pm 3)$ or for $(x + a)(x + b)$ where either $ab = 3$ or $a + b = 4$	
			A1	cao	

Pearson Edexcel - Monday 6 November 2017 - Paper 2 (Calculator) Foundation Tier

2.

24	(a)		±6	M1	for one value (6 or -6) or $\sqrt{36}$ or an embedded answer eg $2 \times 6^2 = 72$
				A1	±6
	(b)	$6x^2 - 4x + 3x - 2$	$6x^2 - x - 2$	M1	for at least 3 terms correct out of a maximum of 4 from expansion, or 4 terms correct ignoring signs.
				A1	cao
	(c)		$(x + 3)^2$	В1	for $(x+3)^2$ or $(x+3)(x+3)$

Pearson Edexcel – Specimen 1 - Paper 3 (Calculator) Foundation Tier

3.

(x-1)(x+1)	M1 $(x \pm 1)(x \pm 4)$ A1 $(x - 1)(x + 4)$ oe
------------	---

OCR Thursday 07 November 2019- Morning (Non-Calculator) Foundation Tier

4.

18		(x + 4) (x + 5)	M2	M2 for $(x + 4)$ and $(x + 5)$ or M1 for $(x + a)$ and $(x + b)$ where $ab = 20$ or $a + b = 9$ or $x(x + 4) + 5(x + 4)$ or $x (x + 5) + 4(x + 5)$ If M0 scored SC1 for $x + 4 = 0$ and $x + 5 = 0$	For M2 or M1 condone omission of final bracket
		-5 and -4 nfww	B1	STRICT FT their factors dep on two brackets in factors. If 0 scored SC1 for answers ±5 and ±4	

OCR Thursday 8 November 2018 – Morning (Non-Calculator) Foundation Tier

5.

15	(a) $3x^2 + xy - 2y^2$ final answer		3	M2 for $3x^2 - 2xy + 3xy - 2y^2$ oe or M1 for two correct terms	Accept e.g. 3yx May be seen in a table for M1	
	(b)		c = 4 d = -1	5	M4 for $3d + 20 = 17$ oe or M3 for $6 + c = 10$ or $3d + 5c = 17$ or $6x + cx = 10x$ or M2 for $6x + 3d + cx + 5c$ oe or M1 for $6x + 3d$ or $cx + 5c$ OR B3 for $c = 4$ and B2 for $d = -1$	Accept e.g. c5
	(c)	(c) 2, 5 nfww 3		M2 for $(x-2)$ and $(x-5)$ or M1 for $(x+a)$ and $(x+b)$ where ab=10 or $a+b=7B1 ft their quadratic factorsIf 0 scored SC1 for answer \pm 2 and \pm 5$		

OCR Thursday 7 June 2018 – Morning (Non Calculator) Foundation Tier

6.

12	а	4cd – 20c final answer	2	M1 for 4cd or -20c in final answer	Condone 4dc 4cd + -20c scores M1 only Do not accept eg 4 × c × d
	b	$3x^2 - 10x - 8$ final answer	2	M1 for at least three of the following terms correct $3x^2 - 12x + 2x - 8$	May be seen in a table -10x implies both – 12x and 2x
	С	x ≤ 8	2	Mark final answer M1 for $3x \le 22 + 2$ or $3x < 22 + 2$ or $3x = 22 + 2$ or $x > 8$ or $x = 8$ If 0 scored, SC1 for answer $x \le \frac{20}{3}$ or $x \le 6\frac{2}{3}$	Condone x < 8 for 2 marks Condone 8 on answer line for M1

OCR Monday 6 November 2017 – Morning (Calculator) Foundation Tier

7.

18	а	(x - 43)(x + 43) final answer	1		Condone omission of final bracket
	b	1400	2	M1 for (57 + 43) (57 – 43) FT their quadratic factors in (a) or better or B1 for 3249 or 1849 seen	M1 for FT factors $(x + 43)(x + 43)$ or $(x - 43)(x - 43)$ only

AQA Wednesday 8 November 2017 – Morning (Calculator) Foundation Tier

8.

	$x^2 - 8x - 8x + 64$	
	$x^2 - 16x + 64$	solve g to simplify
	Ad	
	$x^2 - 16x (+ k)$ $k \neq 64$	M1A0
28	$x^2 - 8x + 64$	M1A0
	$x^2 - 16x + 64 = -15x^3 + 64$	M1A0
	$x^2 - 8x + 8x + 64$ (one error)	M1A0
	$x^2 + 8x + 8x + 64$ (one error)	M1A0
	$x^2 - 6x + 8x + 64$ (two errors)	M0A0
	x^2 + 64 (two errors)	M0A0